Lecture Notes in Fractal Geometry
Natalie Priebe Frank
Contents
Chapter 1. Introduction ……………………………………………................................................… 1
1.1. Classic examples ………………………………………………................................................ 1
1.2. A geometric approach to transformations. …….................................................. 4
1.3. Collage maps: the building blocks of iterated function systems............ 6
1.4. Ane transformations in two dimensions: a geometric approach............ 8
1.5. Collage maps in two dimensions .................................................................................. 11
1.6. What is a fractal? ....................................................................................................................15
1.7. Exercises .........................................................................................................................................16
Chapter 2. Hausdor metric and the space of fractals.........................................................19
2.1. A tiny bit of point-set topology ....................................................................................19
2.2. H(X), the space of fractals................................................................................................. 21
2.3. Metric spaces ..............................................................................................................................21
2.4. Hausdor metric on H(X) .....................................................................................................23
2.5. Exercises ........................................................................................................................................28
Chapter 3. Iterated Function Systems............................................................................................ 29
3.1. Collage maps as contractions on the space of fractals ................................29
3.2. Existence of Attractors for Iterated Function Systems ................................33
3.3. Two computer algorithms for IFS fractals ............................................................34
3.4. The Collage Theorem ..............................................................................................................36
3.5. Exercises ...........................................................................................................................................37
Chapter 4. Dimensions .................................................................................................................................39
4.1. Motivating examples, or, Fun with length and area ...........................................39
4.2. The idea of fractal dimension ............................................................................................42
4.3. Similarity dimension ..................................................................................................................46
4.4. Box-counting dimension .........................................................................................................51
4.5. When the dimensions are equivalent ..............................................................................54
4.6. Exercises ..............................................................................................................................................56
Chapter 5. Julia Sets ...........................................................................................................................................57
5.1. Basic example: dynamical systems in R ...............................................................................58
5.2. Classic example: dynamical systems in C ..........................................................................60
5.3. The Escape Time Algorithm ........................................................................................................62
5.4. Exploring some more, algebraically and Mathematica-ally ................................62
Chapter 6. Mandelbrot Sets ..........................................................................................................................65
6.1. Using the escape-time algorithm to plot the Mandelbrot set ..........................66
______________________________________________
Complete Text (one file) of Lecture Notes in Fractal Geometry including Bibliography